mass

지난달

Conservation of Mass The easiest principle to appreciate is conservation of mass. Except for nuclear reactions, an element’s total mass at the end of a reaction must be the same as that present at the beginning of the reaction; thus, an element serves as the most fundamental reaction unit. Consider, for example, the combustion of butane to produce CO2 and H2O, for which the unbalanced reaction is C4H10(g) + O2(g) ® CO2(g) + H2O(g) All the carbon in CO2 comes from the butane, thus we can select carbon as a reaction unit. Since there are four carbon atoms in butane, and one carbon atom in CO2, we write 4 ´moles C4H10 = 1 ´ moles CO2 Hydrogen also can be selected as a reaction unit since all the hydrogen in butane ends up in the H2O produced during combustion. Thus, we can write 10 ´ moles C4H10 = 2 ´ moles H2O Although the mass of oxygen is conserved during the reaction, we cannot apply equation 2.3 because the O2 used during combustion does not end up in a single product. Conservation of mass also can, with care, be applied to groups of atoms. For example, the ammonium ion, NH4+, can be precipitated as Fe(NH4)2(SO4)2 × 6H2O. Selecting NH4+ as the reaction unit gives 2 ´moles Fe(NH4)2(SO4)2 · 6H2O = 1 ´ moles NH4

Authors get paid when people like you upvote their post.
If you enjoyed what you read here, create your account today and start earning FREE STEEM!
STEEMKR.COM IS SPONSORED BY
ADVERTISEMENT
Sort Order:  trending

This post earned a total payout of 0.029$ and 0.022$ worth of author reward which was liquified using @likwid. To learn more.